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Abstract. The issue of finding feasible mixture designs is formulated and solved as a Lipschitzian 
global optimization problem. The solution algorithm is based on a simplicial partition strategy. 
Implementation aspects and extension possibilities are treated in some detail, providing also numerical 
examples. 
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1. Introduction 

Branch-and-bound (B&B) methods have been proposed for solving a broad class 
of multiextremal (global) optimization problems, including Lipschitzian optimiza- 
tion. Description of the basic concepts and several implementation variants can be 
found, e.g., in Horst (1986), Horst and Tuy (1987, 1990) and Pint& (1986, 1988). 
We shall discuss here a Lipschitzian global optimization problem, originating from 
product design in mixing and processing industries. Specifically, in Section 2 
product design problems are formulated that lead to finding feasible solutions of 
(generally speaking, indefinite) quadratic inequality systems. In Section 3 a B&B 
frame is presented to solve this problem. Section 4 compares different known and 
new lower bound estimates, applicable in the implementation of the B&B 
scheme. Section 5 is devoted to further implementation aspects, illustrated by 
numerical examples. Alternative solution approaches are briefed in Section 6, 
while Section 7 highlights extensions towards further applications of (General) 
Lipschitzian optimization on simplicial regions. 

2. A Product Design Problem 

The problem to be solved consists of identifying mixture products, each repre- 
sented by a vector x E R”, which meet certain requirements. The set of possible 
mixtures is mathematically defined by the unit simplex S = {x E R” 1 Cj xj = 1, 
xi 2 O}, in which the variables xj express the rate of the components in product X. 
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Note that the set S lies in the y1- 1 dimensional hyperplane given by Cj xi = 1. 
The requirements are mathematically expressed by the inequalities g,(x) G 0, 

i=l,..., m derived from target quality levels, demands and properties. The 
functions gj are assumed to be nonlinear smooth functions. This problem type is 
frequently posed with respect to products of pharmaceutical firms, chemical 
factories, oil refineries, etc. Specifically, the problem formulation and solution 
approaches presented here are applied at the product development department of 
a chemical company. We, in addition, assume that the functions g, are quadratic. 
(Let us remark that these quadratic relationships can be derived on the basis of 
analytical or empirical second order approximations of smooth functions.) 

The functions g,(x) can be written explicitly as 

&) = x’Qix + d;x + ci 

in which Qi is a symmetric n by n matrix, di is an n-vector and ci is a scalar. In this 
way D = {xER”~g,(x)~O, i=l,..., m} denotes the set which the “satisfac- 
tory” (feasible) products have to be elements of. Applying the above notation, the 
problem to be solved can be formulated as: 

Find an element of the set D fl S . (1) 

In practical situations, lower and upper bounds or other linear restrictions on x 
might also be present. Further on, process variables xi that are not itself 
components of the mix, could be included in the problem formulation. Although 
these aspects can be implemented in the algorithm presented below, for simplici- 
ty, we avoid this here. Another important aspect is that the mixing industry is 
typically interested in stable solutions of (l), as irregularities, fluctuations may 
appear during the production process. Mathematically, this means that a subset of 
S rl D with a given volume E should be looked for, or alternatively, an internal 
point of S n D located at a given distance from the boundary of D is sought. This 
aspect will be briefly discussed later. The dimensions of the underlying practical 
problems are typically given by up to some 12 components and 10 properties. 

Note that all gi are Lipschitz continuous functions on S, therefore (1) can be 
solved by (see, e.g., in Horst and Thoai (1988)) minimizing over S the expression 
max, {g,(x)> or by minimizing Cj [max {g,(x), O}]‘, p > 0. We present here an 
algorithm, which is closer in spirit to the infeasibility elimination idea suggested in 
Horst (1988) and in Pint& (1988). 

As g,(x) are possibly indefinite quadratic functions, it is well-known from 
literature (see, e.g., Pardalos and Rosen (1987)) that the above minimization 
problems, equivalent to (1)) are multiextremal Lipschitzian optimization prob- 
lems. For illustration consider the following example. 

EXAMPLE 1. A mixture product consisting of three components y1= 3, has to be 
found which meets the following two requirements: 
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1. The feasible set D of Example 1. 

yl(x) = -2 + 8x, + 8x, - 32x,x, c -1 

y&x) = 4 - 12X, - 4x, + 4x,x, + 10x: + 2x; =s 0.4 

Figure 1 forms a projection of S on the x1, x2 space. Vertex xp represents a 
product x consisting for 100% of component xp, p = 1,2,3. The area in which the 
feasible products are situated is given by D. 

The problem of finding an element of D fl S is equivalent to minimizing the 
sum of the infeasibilities: 

~2: g(x): = yn C max {g,(x), 0} . 
I 

Problem (2) has a local optimum, e.g., in xloc = (0.125, 0, 0.87.5), g(~,,,) = 0.725, 
and of course a global optimum (=0) for all elements of D n S. 

3. The Solution Algorithm 

The algorithm suggested to solve problem (1) is based on a partition of S via 
adaptively generated subsets C,. The sets C, are simplices (having n vertices) of 
the y1 - 1 dimensional space containing S. The information obtained in the n 
vertices of C, is used to calculate lower bounds for the functions gi. The lower 
bounds can be used to (possibly) eliminate subsets and to decide on which subset 
is to be splitted further. The algorithm is summarized by the following scheme. 
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ALGORITHM (A): 
0. Set C,:=S,r:=l 

At every iteration there exists a list of subsimplices of S: C,, . . . , C, 
1. For every i=l,. . . ,m and k=l,. . . Y calculate lower bounds pjk of g,(x) 

on C,: (Pik6gi(x) xE C, 
2. If qik > 0 for any i, delete C, and set Y: = Y - 1 

If the list of subsets is empty (Y = 0), STOP: there is no feasible composition; 
in the opposite case, proceed to Step 3. 

3. Split subset C, with the lowest value of Ci & into two parts of equal 
volume, over the longest edge; evaluate x,,,, the midpoint of the longest 
edge of C,. If gj(x,,,) < 0 for i = 1, . . . , m, STOP: a solution is found. 
Otherwise delete the old C, and add the two new subsets to the list, 
r: = Y + 1; return to 1. 

Algorithm (A) can be seen as a special case of the branch-and-bound methods 
discussed, e.g., by Horst and Tuy (1990) and by Pint& (1988). If the fact that, in 
practice, one is interested in robust solutions, is implemented in (A) by deleting at 
Step 2 also subsets C, which are too small (6(C,) < E), then it is clear that (A) 
converges to either a solution of (l), or produces the answer that there is no 
robust solution. Unfortunately, considering only this termination criterion, an 
exponential number of iterations (in n) may theoretically be necessary to verify 
that all subsets are smaller than E. 

Let us remark that algorithm (A) can be modified in such a way that it is not 
necessary to calculate all lower bounds at every iteration. The check in Step 2 can 
be interpreted as the question: is it possible that C, contains a vector x for which 
g,(x) 6 O? To answer this question, it is not necessary to determine the lower 
bound qik, if for one of the vertices xpk of C, holds gi(xpk) d 0. Algorithm (A) 
easily can be modified so that in such situations the lower bound is not calculated. 
Note that - as a consequence -the selection criterion in Step 3 should be changed 
accordingly. 

4. Calculation of Lower Bounds 

The lower bounds in Step 1 of an implemented algorithm can be derived, making 
use of the fact that gj is a Lipschitz continuous function. Let xpk denote the 
vertices of C,, p = 1, . . . , n. The value of qipik can be based on the following 
relations: 

gj(x)~gi(Xpk)-LikIIX-XpkII, XEC,, p=l,...,n. (3) 

In (3) Lj, is the Lipschitz-constant of gi on C,. The Lipschitz-constant Li, can be 
(over)estimated by solving 

Lik = z$: II ‘giCx) II . (4) 
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As the functions g, are quadratic, problem (4) means the maximization of a 
convex function over a polyhedron; hence it can be solved by simply evaluating 
11 Vgi(x) I] at every vertex xpk. Note that the estimate of L can be made sharper, 
by projecting first the gradient Vg,(x) on the hyperplane of S. In the practical 
implementation of the algorithm we applied the lower bound Q, based on (3) 
and (4): 

+)ik = qf.; {idxpk) - Lik ?“y 11 xuk - Xpk 11) 

(x,~ being the vertices of C,, different from xpk). (5) 

In the present context, let us discuss concisely some alternative ways to determine 
lower bounds, based either on the (sole) Lipschitzian or on the quadratic structure 
of the problem. 

In Lipschitzian global optimization on interval (box) regions, Pint& (1986, 
1988) forms rectangular subsets [a,, bk], for which the information available is 
based on the “lower-left” vertex ak and the “upper-right” vertex b,. His 
approach can be termed a diagonal extension of known univariate methods, e.g., 
of the Danilin-Piyavskii-Shubert method (cf. the references). The selection of 
the subset to be refined (cf. Step 3) is based on the (rectangular subset) selector 
function (Pint&, 1986): 

(gi(ak) + gi(bk))‘2- Li II ‘k - bk II . 
For a lower bound used in Step 2 of the algorithm (elimination), Pint& (1988) 
uses the expression 

Applying directly this idea to the simplicial algorithm given above would lead to 
the lower bound: 

&k = eptx {g&k)) - Lik’(Ck) 7 

where 6(C,) = max {I] xUk - xpk ]I: u #p} is the diameter of C,. 
Observe that this would yield a more crude estimate that the lower bound given 

by (5); on the other hand, (6) requires somewhat less calculation per iteration 
than (5). For practical implementations several interior points of C, can be 
additionally evaluated and included into the estimations (5) or (6), usually 
improving the bounds. 

The sharpest lower bound given all information of (3) can be found by solving 
explicitly the following problem: 

min@ize {z} 

subject to 

x E c, 

Z~gi(Xpk)-LikIIX-XpkII p=l,...,n. (7) 
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Meewella and Mayne (1988) approximate (7) by a piecewise linear problem, 
replacing 11 . 11 by the infinite norm. They apply further rectangular subsets C, 
storing all 2”-vertices. In every iteration they solve 2”-LP problems. 

The n-dimensional variant of (7), in which C, is defined by n + 1 vertices, 
defines the problem of finding the deepest point of a “pommes-frites bag” and was 
studied a.o. by Mladineo (1986). The minimizer x of (7) in most cases can be 
found by solving y1 linear equations given by: 

in which x, = argminxp { g,(x,)} , xp the vertices of simplex C,, p = 1, . . . , n + 1. 
Solving (7) is less laborious, if regular simplices are used. Relations for this can 
be found in the bracketing procedures and geometrical observations of Wood 
(1991) and Baritompa (1991). 

In calculating the lower bound, one could make use of the fact that g,(x) is a 
quadratic function. if (2, is positive semi-definite, then the minimum of g,(x) over 
C, can be found by a convex programming algorithm. In the situation when Q, is 
negative semi-definite, g,(x) is concave, a linear underestimation can be given, see 
Horst (1986), Pardalos and Rosen (1987). The fact that Qi might be indefinite 
makes the problem of finding a lower bound more complex. A possible approach 
is to “make” g,(x) convex by replacing x’Qix by Zj I( x I[‘, in which Zi is the largest 
eigenvalue of Qi. A convex minorant (subfunctional) Ojk can be found in the 
following way. Let X, be the n by n matrix with the vertices of C, as columns. 
The minorant: 

Oik(X) = p,‘,x + zi 11 x II2 

can be found by determining Pik = (X,l)‘h,, in which the n-vector h, gives the 
difference between g,(x) and the convex function li 11 x II’, with components 

h,, = dx,k) - Ii 11 Xpk iI2 . 

The minorant Oik(x) equals to g,(x) in the vertices of C,, further on, it is convex. 
The lower bound can then be calculated by determining the minimum of Oi, over 
C,. It is clear that this way of determining the lower bound requires the solution 
of convex programming problems at every iteration. 

A more sophisticated elaboration of this idea is due to Pardalos et al. (1987). 
The quadratic indefinite objective x’Qx is seen as a separable function by 
considering Q = UDU’, in which D is the diagonal matrix of eigenvalues and U 
consists of the n orthonormal eigenvectors. The concave part can be underesti- 
mated by an affine minorant and the convex part is left unchanged. In the 
algorithm of Pardalos et al., at every iteration a convex envelope constructed in 
this way is minimized by the MINOS optimization system. Observe that for the m 
quadratic functions defining problem (1)) this approach might require many local 
optimization steps. 
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Another piecewise linear underestimation of (possibly) indefinite quadratic 
functions can be found in the overview of Al-Khayyal (1990) on bilinear 
problems. One can make use of the fact that the objective of the following 
problem: 

min {xlxz} 

subject to 

1, =z x1 6 L, 

l,dx,Q L, 

can be minorated by: 

min {z} 

subject to 

I,“XiGLi j=1,2 

z 3 1,x, t 1,x, - l,l, 

z 2= L,x, + L,x, - L,L, . 

This idea can be used in general biconvex problems as shown by Al-Khayyal and 
Falk (1983). Again, application of this idea in algorithm (A) would require the 
solution of linear programming problems in every iteration. Foulds, Haugland 
and Jornsten (1991) show the applicability of this sequential LP concept for the 
bilinear forms in the pooling problem in petrochemical industry. The bilinear 
term in the problem described in their paper originates from the balance 
equations of the concentrations in the pooled product and not in the interaction 
between mixed products as described in Section 2. 

5. Implementation Aspects 

The performance of algorithm (A) is illustrated and some implementations aspects 
are discussed below, via further examples. 

EXAMPLE 2. Figure 2 gives the partition of S for the problem introduced in 
Example 1. After 29 iterations, 26 points have been evaluated, a feasible point in 
D is found and two subsets have been deleted. The feasible point found is 
x* = (0.5, 0.375, 0.125) with “acceptable” properties expressed by yi(x*) = -1 
and y2(x*) = 0.281. 

One of the problems of implementing a branch-and-bound algorithm in a 
computer program is that information concerning the partition sets has to be kept 
in the computer memory; this can be done by maintaining a list of subsets and a 
list of points generated, but special data structures based, e.g., on vertices or 
edges are also possible. The problem is that the program should not run out of 
memory, before a solution has been found. In branch-and-bound methods effi- 
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Fig. 2. Partition after 29 iterations. 

cient use can be made of the fact that memory can be “recycled” if partition sets 
are deleted from further consideration; this can be done, e.g., by applying linked 
list structures. 

Another aspect is that, by the symmetry of (A), a generated point may be used 
as a splitting point several times, as can be seen in Figure 2. It is important that 
such a point is evaluated only once and will not be added again to the list of 
points, which occupies most of the memory. Applying this simple idea, only a 
single new point which is not already part of the search information, is to be 
evaluated at every iteration cycle. 

According to our numerical experience, the algorithm suggested can solve 
problems with a few variables (say, up to n = 5) in several hundred iteration 
steps. This will be illustrated by the following example. 

EXAMPLE 3. We consider a test problem originating from a practical applica- 
tion with y1 = 3 components and m = 5 properties. The coefficients of y,(x) can be 
found in the Appendix. Assume that the following requirements are given for the 
properties: 

y1 =z 1.496, y, a- 0.92 , Y, =s 10 i y, 3 179 , y, S85. 

Applying (A) a feasible solution is found after 80 new points have been 
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generated. The solution found is given by: 

x = (37.5,43.75, 18.75) and y(x) =(1.48, 0.921, 9.114, 180.77, -42.81) 

Naturally, it is possible to generate more feasible points by not terminating the 
algorithm. For the problem given, this action required 100 points to be evaluated 
additionally, in order to find 10 more feasible points. Note that it can be more 
easy to carry out an “exhaustive” search say, in a ball around the first solution 
found to estimate how large one of the connected components of the set S n D is. 

The fact that the number of iterations becomes larger, if the minimum of g(x) 
(cf. (2)) is a small positive number, can be illustrated by modifying the above 
example as follows: 

Let 0~ y1 G 85, y, 2 0.963; the other requirements are left unchanged. The 
algorithm needs 56 iterations to conclude that the problem does not have a 
solution. If the problem is “near to feasibility”, e.g., y2 L 0.94, then concluding 
that there is no solution needs 157 iterations; if y, 3 0.93, the “no solution” 
conclusion requires 239 iterations. having these simple examples in mind, it may 
be intuitively clear that such “bad” cases can be very hard to solve in higher 
dimensions. 

6. Some Alternative Approaches to Solve (1) 

The discussed variants of the branch-and-bound algorithm make use of the 
quadratic and/or Lipschitzian structure of (1). The problem might also be tackled 
by other exhaustive search techniques; some of them will be highlighted below. 

Note first that one should be aware of the fact that an indefinite quadratic 
programming problem in the worst case possesses 2’, local minima, where p is the 
number of negative eigenvalues of Q (see Pardalos and Rosen (1987)); moreover, 
(1) is defined by m quadratic functions. Note further than an objective function 
equivalent to (1) such as g(x) (cf. (2)) is not differentiable, so that local search 
methods based on gradients should take this into account. 

Manas (1968) proposes a kind of grid search method for solving the indefinite 
quadratic programming problem. For problem (l), a minimum size for the grid 
can be identified by the Lipschitz-constant g,(x) on S and by the minimum 
acceptable size of a subinterval E. Naturally, the number of grid points grows 
exponentially with n. Another viable alternative is to make use of random search 
techniques and extensions for solving the problem, see, e.g., Rinnooy Kan and 
Timmer (1987a, b). However, if after any finite number of iterations no solution 
is found, then it is not necessarily clear whether (1) has got a solution or not. 
Note at the same time that grid search as well as random search methods generate 
new points that can be evaluated much quicker than algorithm (A). This is caused 
by the fact that (A) calculates gradients and longest edges in every iteration and 
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that newly generated candidate solutions may turn out to be already evaluated. 
Therefore direct search methods may be faster in finding a solution, if the set 
S n D is relatively large (while might perform poorly in the opposite case). In 
many practical situations, during the actual decision making (mixture design) 
procedure the requirements towards the products are sequentially increased, thus 
making the feasible region gradually smaller. This comment seems to validate our 
approach (or similar ones). Let us remark additionally that in the practically 
relevant case of infeasibility, the approach suggested aims at a “best compromise” 
infeasible solution, in the sense of the objective form g(x) suggested (cf., e.g., 
(2)). 

7. Further Application Prospectives 

Consider the global optimization problem 

in which f is Lipschitzian on the simplex S, L > 0 being a valid (over) estimate of 
its Lipschitz-constant. We shall assume furthermore that f has at most a countable 
set X” of (isolated) global minimizers on S. 

In a number of practical cases, the “exact” analytical dependence of f on x is 
not known: instead of that, the “quality” of x is to be evaluated experimentally or 
algorithmically. This way, although the smooth analytical behaviour off may be 
known, the use of further structural and/or higher information may be out of 
question or its use can be very tedious. In such cases, Lipschitzian optimization 
can be rationally applied for solving (8). 

To highlight two problem-classes that can be described in the form (8), one can 
mention, e.g., “optimal” mixture design and “optimal” negotiated combinations 
of expert opinions: for details, see, e.g., Klafszky, Mayer and Terlaky (1989) and 
Pint& and Cooke (1987), respectively. The work of Klafszky et al. considers the 
problem of minimizing the “discrepancy” between mixture x and a prespecified 
“ideal’ target product. In particular, they show that if both the base materials and 
the target can be modelled by discrete probability distributions and the function f 
is defined by any of several statistical divergence functions (Csiszar (1975)), then 
the problem derived is solvable by corresponding nonlinear programming tech- 
niques. A straightforward extension of their approach leads to the general model 

(0 
In Pint& and Cooke (1987) an optimization approach is presented for aggregat- 

ing individual expert “opinions” - modelled as point values, real vectors or 
probability distributions - in some quantitatively “best” sense: the framework 
proposed there subsumes a large variety of context-dependent realizations. 
Again, this general problem-type can frequently be modelled in the form (8). 

As it is known - following, e.g., the conceptual framework of Horst and Tuy 
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(1987, 1990) or Pint& (1987, 1988) - convergent B&B strategies can be applied to 
solve (8). These methods, tailored to the problem-type (8), produce correspond- 
ing adaptive simplicial partitions in such a manner that the accumulation point set 
of the generated vertex set is identical to X*. Different ways of realizing 
convergent B&B schemes are indicated in Horst and Tuy (1990, chapters IV and 
XI) and in Pint& (1990). Specifically, in the latter paper subsimplex-specific 
Lipschitzian bounds, similar to (5), are also derived. 

Let us remark finally that the solution approaches mentioned can be directly 
extended to the case, in which a finite number of Lipschitzian constraints 
&T)sO, i= 1,. . . ) m (that determine a non-empty, robust feasible region) is 
added to the explicit constraint set x E S in (8): for details, cf. the works referred 
to above. 

8. Conclusions 

In this paper an algorithm was proposed to find feasible solutions of indefinite 
quadratic constrained problems on an imbedding simplex; as it is shown, problem 
(1) can be handled in the frames of global optimization. The suggested algorithm 
is based on the branch-and-bound concept and theoretically converges to solu- 
tions of (1) or concludes that there is no feasible solution. The algorithm is simple 
and makes less use of the fact that the constraints are quadratic than earlier 
algorithms of Pardalos et al. and of Al-Khayyal for indefinite quadratic program- 
ming; furthermore, it can be extended for solving (more general) global optimiza- 
tion problems on simplicial feasible regions. For the implementation of branch- 
and-bound algorithms, linked list structures or other dynamic memory allocation 
can be suggested. The numerical examples presented indicate the viability of the 
approach. 
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Appendix 

The calculation of the property functions y; in Example 3 is based on the 
following relations. Property yj is calculated as: 

in which .?; = x, - 0.5. 
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The data that are used are given by the following table: 

property 
i C, 

1 1.495 
2 0.951 
3 15.986 
4 178.708 
5 52.002 

4, 4, 4, 4il? qi13 q123 

-0.006 -0.024 0.050 -0.002 0.017 -0.021 
-0.014 -0.048 0.108 -0.001 -0.004 0.006 

4.729 - 16.657 -8.974 -10.174 -21.977 -86.952 
-0.687 12.800 -7.347 0.241 -4.947 -3.967 
-5.217 -201.326 192.989 -6.180 337.106 1030.228 

1 0.001 0.008 -0.021 
2 0.004 0.001 -0.014 
3 20.605 32.003 -81.278 
4 -0.766 -0.528 7.822 
5 116.750 -67.424 -845.215 
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